Pragmatic Probabilistic Programming: Parameter Adaptation in PyMC3

Slides are online!

ppl-tuning.colindcarroll.com

Code is also available here.

Many thanks to the PyMC team and contributors, and also to autograd + jax developers.

PyMC3 Syntax


import pymc3 as pm

with my_model:  # defined earlier
    trace = pm.sample()  # ✨✨magic✨✨

PyMC3 and Stan

What is tuning?

$$ \mathbb{E}[f] = \int f~d\pi \approx \frac{1}{n}\sum_n f(x_j),~~x_j\sim \pi $$

Metropolis-Hastings Adaptation

$$A(x_t) = \min\left\{1, \frac{\pi(x_t)}{\pi(x_{t - 1})}\right\}$$

Baby Steps

Giant Steps

Optimal Steps

Effective sample size

$$\hat{\mu} = \frac{1}{n}\sum_{j=1}^n x_j$$

$$\operatorname{Var}(\hat{\mu}) = \frac{\sigma^2}{n}$$

Effective sample size

$$\hat{\mu} = \frac{1}{n}\sum_{j=1}^n x_j$$

$$\operatorname{Var}(\hat{\mu}) = \frac{\sigma^2}{n_{eff}}$$

Windowed adaptation

Tuning in PyMC3


def tune(scale, acc_rate):
  """Tunes the scaling parameter for the proposal
  distribution according to the acceptance rate over the
  last tune_interval:

  Rate    Variance adaptation
  ----    -------------------
  <0.001        x 0.1
  <0.05         x 0.5
  <0.2          x 0.9
  >0.5          x 1.1
  >0.75         x 2
  >0.95         x 10
  """
				

Tuning in PyMC3


def tune(scale, acc_rate):
  if acc_rate < 0.001:
    # reduce by 90 percent
    scale *=0.1
  elif acc_rate < 0.05:
    # reduce by 50 percent
    ...
  elif acc_rate > 0.5:
    # increase by ten percent
    scale *= 1.1

  return scale
						

Hamiltonian Monte Carlo

$$\frac{d \mathbf{q}}{dt} = \mathbf{p}, ~~ \frac{d \mathbf{p}}{dt} = - \frac{\partial V}{\partial \mathbf{q}}$$

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Step Size Adapt


def dual_averaging_adapt(self, p_accept):
  self.error_sum += self.target_accept - p_accept
  log_step = (self.mu -
              t ** -0.5 * self.error_sum / self.gamma)
  eta = self.t ** -self.kappa
  self.log_averaged_step *= (1 - eta)
  self.log_averaged_step += eta * log_step
  self.t += 1
  return np.exp(log_step), np.exp(self.log_averaged_step)
				

Step Size Adapt

Covariance Estimation


class _WeightedVariance:

  def add_sample(self, x):
    self.w_sum += 1
    old_diff = x - self.mean
    self.mean[:] += old_diff / self.w_sum
    new_diff = x - self.mean
    self.raw_var[:] += old_diff * new_diff
				

Covariance Estimation


class QuadPotentialDiagAdapt:

  def update(self, sample):
	self._foreground_var.add_sample(sample)
	self._background_var.add_sample(sample)
	self._update_from_weightvar(self._foreground_var)

	n_samples = self._n_samples
	if n_samples > 0 and n_samples % self.window == 0:
		self._foreground_var = self._background_var
		self._background_var = _WeightedVariance()

	self._n_samples += 1
				

PyMC3 Tuning Routine

Stan Warmup

Takeaways

  • Automate what you can
  • Consider effective sample size
  • Windowed adaptation

Thanks!